May 2007

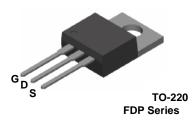
FDP8447L

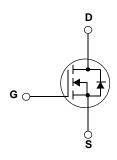
N-Channel PowerTrench[®] MOSFET 40V, 50A, 8.7m Ω

Features

www.D

- Max $r_{DS(on)} = 8.7 \text{m}\Omega$ at $V_{GS} = 10 \text{V}$, $I_D = 14 \text{A}$
- Max $r_{DS(on)} = 11.2m\Omega$ at $V_{GS} = 4.5V$, $I_D = 11A$
- Fast Switching
- RoHS Compliant




General Description

This N-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low $r_{DS(on)}$ and optimized BV_{DSS} capability to offer superior performance benefit in the application.

Applications

- Inverter
- Power Supplies

MOSFET Maximum Ratings $T_C = 25$ °C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V_{DS}	Drain to Source Voltage			40	V
V_{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous (Package limited)	T _C = 25°C		50	
	-Continuous (Silicon limited)	T _C = 25°C		65	^
^I D	-Continuous	T _A = 25°C	(Note 1)	12	Α
	-Pulsed			100	
E _{AS}	Drain-Source Avalanche Energy (Note		(Note 3)	153	mJ
P _D	Power Dissipation	T _C = 25°C		60	W
	Power Dissipation $T_A = 25^{\circ}C$ (Note 1)		(Note 1)	2	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case		2.1	°C/W
R _{e,IA}	Thermal Resistance, Junction to Ambient	(Note 1)	62.5	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDP8447L	FDP8447L	TO-220AB	Tube	N/A	50units

Electrical Characteristics $T_J = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV_{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	40			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250μA, referenced to 25°C		34		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32V$,			1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	1	1.7	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250\mu\text{A}$, referenced to 25°C		-6		mV/°C
		V _{GS} = 10V, I _D = 14A		7.7	8.7	
r _{DS(on)}	r _{DS(on)} Static Drain to Source On Resistance	$V_{GS} = 4.5V, I_D = 11A$		8.9	11.2	mΩ
		$V_{GS} = 10V, I_D = 14A, T_J = 125^{\circ}C$		12.1	13.7	
9 _{FS}	Forward Transconductance	$V_{DD} = 5V, I_{D} = 14A$		74		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 20V V 0V	1880	2500	pF
C _{oss}	Output Capacitance	$V_{DS} = 20V, V_{GS} = 0V,$ f = 1MHz	245	325	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1101112	150	225	pF
R_g	Gate Resistance	f = 1MHz	1.4		Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time	.,	$V_{DD} = 20V, I_{D} = 14A,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$		9	18	ns
t _r	Rise Time	$V_{DD} = 20V, I_D = 14A$			7	14	ns
t _{d(off)}	Turn-Off Delay Time	v _{GS} = 10v, k _{GEN} =			28	45	ns
t _f	Fall Time				4	10	ns
Q_g	Total Gate Charge	V _{GS} = 0V to 10V			35	49	nC
Qg	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$	V _{DD} = 20V, I _D = 14A		19	27	nC
Q _{gs}	Gate to Source Charge		ID = 14A		4.7		nC
Q_{gd}	Gate to Drain "Miller" Charge				6.2		nC

www.DataSIDrain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 14A (Note 2)	0.8	1.2	V
t _{rr}	Reverse Recovery Time	I _E = 14A. di/dt = 100A/us	28	42	ns
Q _{rr}	Reverse Recovery Charge	1 _F = 14A, α/αι = 100A/μS	22	33	nC

 $R_{0,IG}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{0,IG}$ is guaranteed by design while $R_{0,IG}$ is guaranteed by design by the user's board design. 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. Starting $T_J = 25^{\circ}$ C, L = 1mH, $I_{AS} = 17.5$ A, $V_{DD} = 40$ V, $V_{GS} = 10$ V.

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted



Figure 1. On-Region Characteristics



Figure 3. Normalized On-Resistance vs Junction Temperature

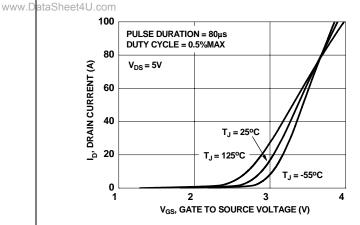


Figure 5. Transfer Characteristics

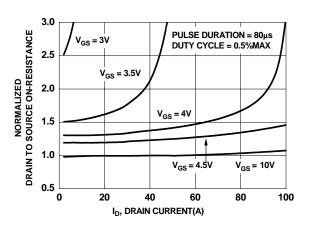


Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

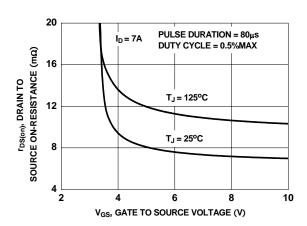


Figure 4. On-Resistance vs Gate to Source Voltage

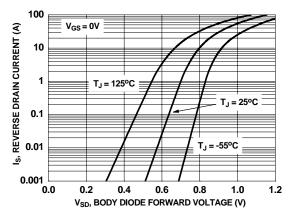


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted

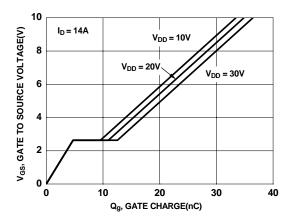


Figure 7. Gate Charge Characteristics

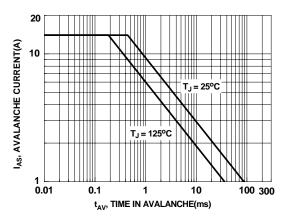


Figure 9. Unclamped Inductive Switching Capability

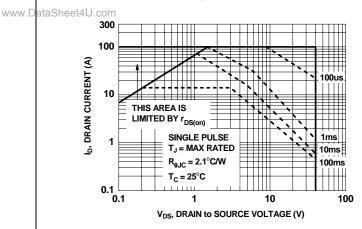


Figure 11. Forward Bias Safe Operating Area

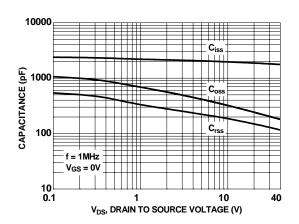


Figure 8. Capacitance vs Drain to Source Voltage

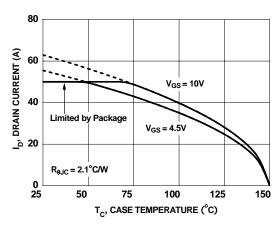


Figure 10. Maximum Continuous Drain Current vs Case Temperature

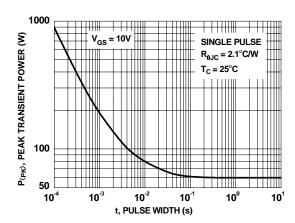


Figure 12. Single Pulse Maximum Power Dissipation

Typical Characteristics T_J = 25°C unless otherwise noted

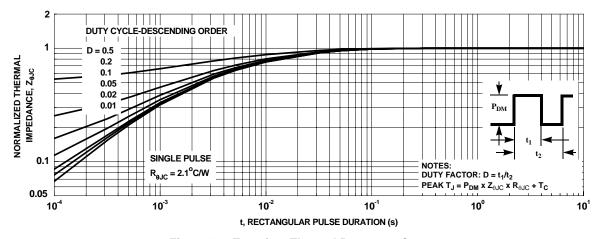


Figure 13. Transient Thermal Response Curve

www.DataSheet4U.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx® HiSeC™ Power-SPM™ TinyBuck™ PowerTrench® TinyLogic[®] Across the board. Around the world™ i-Lo™ ActiveArray™ ImpliedDisconnect™ Programmable Active Droop™ TINYOPTO™ $\mathsf{QFET}^{\mathbb{B}}$ TinyPower™ Bottomless™ IntelliMAX™ ISOPLANAR™ QS™ TinyWire™ Build it Now™ CoolFET™ MICROCOUPLER™ QT Optoelectronics™ TruTranslation™ CorePLUS™ µSerDes™ MicroPak™ Quiet Series™ $\mathsf{UHC}^{\mathbb{R}}$ CROSSVOLT™ MICROWIRE™ RapidConfigure™ CTL^TM UniFET™ Motion-SPM™ RapidConnect™ **VCX™** Current Transfer Logic™ MSXTM ScalarPump™ Wire™ DOMETM MSXPro™ SMART START™ SPM[®] E²CMOS™ OCX^{TM} $\mathsf{EcoSPARK}^{\mathbb{R}}$ OCXPro™ STEALTH™ EnSigna™ $\mathsf{OPTOLOGIC}^{\mathbb{R}}$ SuperFET™ OPTOPLANAR® SuperSOT™-3 FACT Quiet Series™ FACT[®] SuperSOT™-6 PACMAN™ $\mathsf{FAST}^{\mathbb{R}}$ SuperSOT™-8 PDP-SPM™ $\mathsf{POP^{\mathsf{TM}}}$ FASTr™ SyncFET™ Power220® FPS™ TCM^{TM} FRFET® Power247® The Power Franchise® (L) TM GlobalOptoisolator™ PowerEdge™ PowerSaver™ TinyBoost™ GTO™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

www.DataS

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. 127